Tectonic Regimes of Terrestrial Planets & Exoclimes

atmo/hydrosphere ~——— surface * > interior

A. Lenardic, T. Hoink, C. Sandu, M. Weller - Rice U
C. O'Neill - Macquarie U

AM. Jellinek - UBC

L. Moresi - Monash U

P. McGovern - LPT






Tectonic Plates in Motion:
Surface Manifestation of Mantle Convection
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Mantle Convection Simulation
With Temperature- and Yield Stress-Dependent Rheology

Stress Below Yield: Temperature Dependent Viscosity

Stress At Yield: Plastic Rheology that generates
Ductile Shear Zones (weak plate margins)

cold high viscosity ( mobile plate analog) failed region -
warm low viscosity (bulk mantle analog) (megathrust analog)
failed region - (ridge analog)

Cooled from Above & Heated From Within by Decay of Radiogenics
And From Below by Core Heat Flux



If Convective Stress < Lithosphere Yield Then Upper Layer Stagnates
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Single Plate Planet (e.g., Present Day Venus and Mars)
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For Mobile Plate Regime: Convective Stress > Lithosphere Yield
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Plate Tectonic (mobile lid) Regime Surface and Basal Heat Flux
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Changing Tectonic

Regimes over Time
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Atmospheric Signature of Tectonic Regimes

Changing Tectonic Regimes over Planets Life

Mobile Regime Episodic Regi

MANTLE TEMPERATURE

RADIOGENIC HEAT PRODUCTION

EVOLUTION IN TIME



Will Super Sized Earths Have Plate Tectonics or Not ?




Will Super Sized Earths Have Plate Tectonics or Not ?
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If Convective Stress < Lithosphere Yield Then Upper Layer Stagnates

Single Plate Planet (e.g., Present Day Venus and Mars)

For Mobile Plate Regime: Convective Stress > Lithosphere Yield



Will Super Sized Earths Have Plate Tectonics or Not ?
Super Sizing Leads To:

Greater Radiogenic Content in Mantle
Greater Convective Velocity - Increases Convective Stress
Hotter - Lower Viscosity - Decreases Convective Stress

Greater Gravitational Acceleration
Greater Fault Normal Stress - Increases Yield Stress

For Mobile Plate Regime: Convective Stress > Lithosphere Yield



Super Earths will not have Super Earths will have
plate tectonics (2) | plate tectonics (1)
(2) many groups -, 2 < (1) many groups




Super Earths will not have Super Earths will have
plate tectonics (2) plate tectonics (1)
(2) many groups (1) many groups

2 Groups get 2 Different Answers to Same Question

You Can:

Assume one group right & see where that takes you
(provides two options)

Assume both are right & see where that takes you
(provides third option)

"I'f there are two courses of action,
you should always take the third”



Tectonic Regimes of Terrestrial Planets & Exoclimes

atmosphere surface interior

On the Notion of Well Defined Tectonic Regimes for
Terrestrial Planets in this Solar System and in
Other Solar Systems



The Notion of Well Defined

Tectonic Regimes
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The Notion of Well Defmed

Tectonic Regimes ¢
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Stagnant Lid
(single plate planet)
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Super Plate Tectonics is Not Clear Cut




TIME AND SPACE:

A Scaled Up Earth Will

Be At A Different Point In
Its Thermal Evolution (It May

Transition To Different Geologic
Regimes Over Time)

PLATES AND LIFE:

Plate Tectonics Effecting
Evolution of Life on Earth
Does Not Mean Life or its
Evolution Depends on
Plate Tectonics



MAYBE THERE IS SUCH A THING AS
TOO MUCH OF A SMOOTH THING
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Notion of Plate Tectonics Being Key to Habitability

Is Not Tied to “Laws of Plate Tectonics”
(e.g., rigid plate interiors, narrow boundaries,
Euler poles, ...)

It’s Principally Tied to Volatile Cycling
(Climate Stability: Volcanism-Weathering,
Oceans-Deep Water Cycle)

Active Lid
(plate tectonics)




Stagnant Lid
(single plate planet)

Volatite Cycling Possible

Eruption &
Cooling
]
Melt produced & extracted to surface.
Region below compacts downward.

| Conveyor-belt that moves material

Dry downward as it moves heat upward.
gLl + Crustal Entrainment Recycling
+ Phase Change Driven Recycling

from Moore 2012



Atmospheric Signature of Tectonic Regimes
Changing Tectonic Regimes over Planets Life

Will Super Earths Have Plate Tectonics?
Undeterminable
Multiples States are Allowable

Does it Matter for Habitability?
Worth Considering Volatile Cycling w/0o
Plate Tectonics



