Challenges in opacity modeling for planetary and stellar atmosphere studies: line widths

R.E.Lupu¹, R.S.Freedman¹, and M.S.Marley²

1.SETI Institute, Mountain View, CA; 2.NASA/Ames Research Center, Moffett Field, CA

Abstract

Opacity calculations play an essential role in planetary atmosphere modeling. One of the fundamental problems encountered by opacity calculations is the limited knowledge of line broadening, for which laboratory data is often lacking and theoretical models offer only coarse approximations in most cases. In addition, the spectral averaging methods employed in computing the atmospheric structure and radiative transfer can lead to additional discrepancies between models, and make onthe-fly changes to the atmospheric composition difficult. We present a brief comparison between our model and other current methods of opacity calculations for atmosphere modeling, show the line width variation as a function of temperature and pressure, and the possible implications of these variations for deriving rotational velocities.

VSTAR

- Molecular opacities include H₂, TiO, VO, H₂O, CO, CO₂, CH₄, NH₃, CaH, FeH, MgH, CrH, TiH, CH, CN, C₂, HCN/HNC (Bailey and Kedziora-Chudczer 2011).
- Line widths are taken from detailed calculations in the literature: e.g. CH₄ from HITRAN, Pine 1992, Pine and Gabard 2003 ; H₂O from Bailey 2009, Delaye et al. 1989, Gamache et al. 1996; CO from Rothman et al. 2005, Regalia-Jarlot et al. 2005.
- Voigt profiles + van Vleck-Weisskopf profile for the line wings, with correction factors.
- Radiative transfer code DISORT (1D, plane-parallel, LTE) .

Our model

Molecular opacities include H₂, TiO, VO, H₂O,
CO, CaH, FeH, OH, MgH, SiH, SiO, SO₂, SH, PH₃, O₂,
O₃, NO, NO₂, NH₃, N₂, LiCl, HF, HCN, HCl, H₂S, CrH,
CO₂, ClO, CH₄, depending on atmospheric composition.

• The line widths are taken from the literature or approximated using similarities with available measurements: e.g. CH₄ from L. Brown 1996 (priv. comm.); H₂O from Gamache et al. 1998, 2001; CO from Bulanin et al. 1984, Mannucci 1991, Le Moal and Severin 1986.

- Voigt profiles are computed for all lines. Turbulent broadening can be included, but not used by default.
- Custom radiative transfer code (1D, planeparallel, LTE), same results as DISORT.

Phoenix

Molecular opacities include H₂, TiO,
VO, H₂O, CO, CaH, FeH, CH, NH, OH, MgH,
SiH, C₂, CN, SiO (Allard et al. 1995).

 All line widths are computed in the van der Waals approximation, with corrections for non-alkali species. This does not take into account the dependence on molecular structure and energy levels. A comparison between this approach and other calculations has not been performed.

• Partial Voigt profiles, constant 2 km/s turbulent broadening.

• Phoenix radiative transfer code (1D and 3D, spherical and plane parallel, optional NLTE).

Line width overview

Molecular line width values are difficult to obtain, being determined by numerous factors, including: temperature, pressure, quantum numbers, energy levels, collisional partner, turbulent velocity, polarizability. These dependences are often poorly known due to the lack of experimental data.

Depending on the assumptions made and available data, differences by factors of a few can arise in the estimated line widths.

 H_2O self- and N_2 line broadening. Models include dipole and higher order electrostatic interactions. Large variations are also present between low and high J levels (Hartmann et al. 1987).

Line widths in our model

We use Voigt profiles, with the FWHM given by $F_V \approx F_D^* (\sqrt{(F_L/F_D)^2 + 2.012(F_L/F_D) + 4.07 - 1.075})$ where the Doppler and Lorentz widths are $F_D = 2\sqrt{\ln 2^* \tilde{v}_0 / c^* \sqrt{v_T^2 + v_{turb}^2}}$

 $F_L = 2 \gamma_0 (p/1.01325) (296/T)^n$

Rotational velocities

We construct H_2O absorption spectra for a set of (p,T) points and convolve them with the rotational profiles for velocities of 10, 20, 50 and 100 km/s. Each convolved spectrum is cross-correlated with the assumed input template spectrum, and the rotational velocity is derived by fitting the peak of the cross-correlation function using an MCMC algorithm.

Template mismatch relative to the original spectrum led to factors of up to ~8 difference in the derived rotational velocity relative to the true v_{rot} over the searched parameter

⁵⁰⁰ 1000 1500 2000 2500 3000 3500 Temperature (K) ²⁰⁰⁰ 2500 the original (p,T).

The v_{rot} discrepancy is caused not only by the variation of the line width with (p,T), but also by differences in the line list. For each temperature we limit the line list to the most important transitions. When the template is computed at the same temperature as the original, the results will show only the dependence of the derived rotational velocity on the line width.

When both the original and the template are calculated at the same T, the v_{rot} correction factor depends also on the value of v_{rot}. Over the chosen temperature range, this translates into a monotonic relationship between this correction factor and the total FWHM of the line, approximated as $FWHM = \sqrt{FWHM_{Voigt}^2 + v_{rot}^2}$, where FWHM₀ matches the pressure of the original.