The diversity of Earth's past (and future) atmospheres

Tim Lenton

School of Environmental Sciences, University of East Anglia, Norwich, UK

Thanks to Andy Watson, Colin Goldblatt, Jim Lovelock

Outline

- Life detection
- Photosynthesis
- Oxygenation
- Implications

Life detection

Fluxes of gases

Atmospheric compositions

Atmosphere prior to life (~4 Ga)

Solar constant 75% of present value

Oxygen was virtually absent (<10⁻¹³)

Kasting (1993)

The first billion years or so

Oldest reduced carbon ~3.8 Ga

- Rare turbidite in Isua supracrustal group, Western Greenland
- Reduced carbon in the form of graphite, tiny granules a few microns across
- Remarkable δ¹³C ~ -20 ‰ indicates carbon fixation by Rubisco
- Suggests photosynthesis but not necessarily oxygenic photosynthesis

Outcrop of turbidite containing graphite

Types of photosynthesis

- General equation for photosynthesis: $CO_2 + 2 H_2A + hv \rightarrow (CH_2O)_n + H_2O + 2A$ carbon dioxide + electron donor + light energy \rightarrow carbohydrate + water + oxidized donor
- Many anoxygenic forms:
 electron donors: H₂, H₂S, S⁰, SO₃²⁻, S₂O₃²⁻, Fe²⁺
- Oxygenic photosynthesis:
 CO₂ + 2 H₂O + hv → (CH₂O)_n + H₂O + O₂ carbon dioxide + water + light energy → carbohydrate + water + oxygen

Early recycling biospheres

Why use water?

- Need to exhaust other donors that are easier to extract electron from (H₂, H₂S, Fe²⁺...)
- Requires an unusual environment
 - Microbial mat
 - Sulphur deficient lake
 - After a bloom in the surface ocean
- Need to get enough energy to split water
 This is a major challenge...

Photosystem I and Photosystem II

Photosystems of each type are found separately in different anoxygenic photosynthesisers But they are linked together in oxygenic photosynthesis (cyanobacteria)

Stroma Lhcb1+2+3 Lhcb4 \Lhcb6 Lhcb5 2POH, to cyt bf Mem. Mn Mn Mn Mn Lumen 0)Tn 2H₂O **O**,+(4H) **PSII**

Type-I photosystems generally have cyclic electron transport

Type-II photosystems generally have linear electron transport

The 'Z' scheme

Allen & Martin (2007) Nature 445: 610-612

Water-splitting reaction centre

Yano et al. (2006) Science 314: 821-825

Bicarbonate (HCO₃⁻) scenario

Dismukes et al. (2001) PNAS 98(5): 2170-2175

A critical step in evolution?

- A number of things all had to evolve and come together in one organism:
 - Both type-I and type-II photosystems
 - Plus the linkage between them such that a current flows
 - The water splitting complex
 - High energy light harvesting
- Each step along the way had to confer a selective advantage
 - (or at least not too much disadvantage)
- Achieving all this is inherently improbable

Origin of oxygenic photosynthesis

Lenton & Watson 'Revolutions that made the Earth' OUP (2011)

Eigenbrode & Freeman (2006) PNAS 103: 15759-15764

Stuart Daines

Archæan atmosphere ~2.7 Ga

Solar constant 81% of present value

Detection problem: O₂ too low?

Kasting et al. (1983) Rye et al. (1995) Pavlov et al. (2000)

Nitrogen-enhanced warming?

On today's Earth there is 0.5 x present atmospheric N_2 (PAN) in the crust and >1.4 x PAN in the mantle, which was once in the atmosphere

Goldblatt et al. (2009) Nature Geoscience

Hydrogen escape

Overall reaction: $2 H_2 O \rightarrow O_2 + 4H(\uparrow space)$

Catling et al. (2001)

History of atmospheric oxygen

Mass Independent Fractionation (MIF) of sulphur indicates $O_2 < 10^{-5}$ PAL

Photochemical methane oxidation $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Data are published results from Jim Kasting's 1D photochemical model

Bi-stability of atmospheric oxygen

Bi-stability of atmospheric oxygen

Bi-stability of atmospheric oxygen

- Potential triggers:
 - A decline in reductant input from the mantle
 - An increase in net primary productivity
 - A pulse of net organic carbon burial
 - Hydrogen escape to space

The Great Oxidation

A small biological or geological perturbation could have caused the major transition

Once it occurred it was difficult to reverse

It facilitated the evolution of eukaryotes

It was accompanied by extreme glaciation but the mechanistic connection is unclear

~2 Ga possible eukaryotic alga Grypania spiralis ~2cm diameter coils

Oxygen and glaciations

Major gases ~1.8 Ga

Solar constant 87% of present value

Ozone layer has formed Disequilibrium of CH_4 and O_2 detectable!

Segura et al. (2003) Astrobiology

Canfield (1998) Nature **396**: 450-453.

Laughing gas atmosphere?

Radiative forcing calculated by a line-by-line model relative to 10⁻⁸ of each gas

Results from Colin Goldblatt

Why did oxygen remain at an intermediate level for >1 Gyr?

There was still a lot of methane in the atmosphere and oxygen was influenced by much higher-than-today rates of hydrogen escape

What caused O₂ to rise at the end of the Proterozoic?

- Hypothesis: Increased P supply to the oceans
- There are no phosphorite (phosphorus-rich rock) deposits prior to the Neoproterozoic
- There are small quantities near-simultaneous with the early snowballs.
- Numerous large deposits around 600 million years ago, nearly continuous since that time.

Hypothesised trigger: Land colonisation

Fungi ~1430 Ma

Cyanobacteria ~850 Ma

Algae ~750 Ma

Lichens ~600 Ma

Heckman et al. (2001) Science 293: 1129-1133

Butterfield (2005) *Paleobiology* 31: 165-182 House et al. (2000) *Geology* 28: 707-710 Butterfield (2004) *Paleobiology* 30: 231-252 Yuan *et al.* (2005) *Science* 308: 1017-1020

- Microfossils
- Molecular clocks
- Carbon isotope signature of photosynthetic microbial communities

Consequences of bio-weathering

- Silicates → Carbonates
 - Decrease in CO₂
 - 'Snowball Earth' events
 - ~0.74 Ga
 - ~0.59 Ga
- Phosphorus \rightarrow Organic C
 - Increase in O₂
 - Necessary for larger animals
 - Ediacara ~0.57 Ga
 - Cambrian 'explosion' ~0.54 Ga

Lenton & Watson (2004) Geophys. Res. Lett. 31: L05202

The Neoproterozoic

 Evolution may have triggered the switch into the 'snowball' state Life inadvertently pushed the limits. of habitability Extreme glaciations were accompanied by a rise in oxygen This facilitated the evolution of large multi-cellular animals

The Phanerozoic

Estimates of O₂ from the charcoal record (400-0 Ma)

Glasspool & Scott (2010) Nature Geoscience 3: 627-630

Earth future

- Solar luminosity increasing ~1% per 100 My
- Long-term climate regulator removes CO₂
- CO₂ starvation:
 - $-C_3$ plants $CO_2 \sim 150$ ppm
 - C₄ plants CO₂ ~10 ppm
- Overheating:
 - Eukaryotes ~50 °C
- Loss of water via H-escape to space
- What will happen to O₂?

Past and future CO₂ and temperature

COPSE model of Bergman, Lenton and Watson

Past and future O₂ and plants

COPSE model of Bergman, Lenton and Watson

Four stages for oxygen

Earth timeline

Major gases

Interval of most extreme atmospheric disequilibrium (~50% of life span of planet)

Generalising for O₂

- Oxygenic photosynthesis
 - So difficult to evolve that it might only occur on a tiny fraction of planets with life
- Oxygenation
 - Contingent on oxygenic photosynthesis but also dependent on hydrogen escape
- Aeration (high O₂)
 - Probably contingent on colonisation of the continents to increase phosphorus supply

Bi-stability for CO₂ and temperature?

Lenton & von Bloh (2001) Geophys. Res. Lett. 28: 1715-1718

Violating the principle of mediocrity

- Conscious 'observer' species require lots of O_2 in the atmosphere
- Around a type-M star, splitting water (oxygenic photosynthesis) would require coupling 3 or 4 photosystems
- That makes it even harder to evolve

Goldilocks principle for oxygenation

Depends on planet size:

- Too small:
 - bulk atmospheric loss occurs
- Near Earth size:
 - diffusion limited H-escape increases with size
- Too large:
 - energetic limitation of H-escape delays oxidation beyond the habitable lifetime

Conclusions

- The present Earth is not a good guide to what to expect on other life-bearing planets
- The earlier Earth provides more clues
- Oxygenation could be very rare
 (it had to have occurred on Earth for us to exist and thus be able to observe it)