The mechanism of superrotation: Comparing Venus and Titan with General Circulation Models

S. Lebonnois

LMD, Paris

			ΤΙΤΑΝ
<pre>VENUS <ts> ~ 450°C</ts></pre>	<ts> ~ 15°C</ts>	<ts> < -50°C</ts>	<ts> ~ 95 K</ts>
CO ₂ ~90b	CO ₂ ~0.3 mb	$CO_2 = 0.006 b$	$CH_4 \sim 0.06 b$
H ₂ O/CO ₂ <<1	O ₂ ~0.2 b	$N_2 = 0.0002 b$	N ₂ = 1.5 b
N ₂ ~3b	N ₂ ~0.8 b		
Sun distance = 0.72 AU $M = 0.81 M_{Earth}$ $\rho = 5.25$ obliquity = 177.4° rotation = (-) 243 d	1 AU 1 5.52 23.5° 23 h 56 m	1.52 AU 0.11 M _{Earth} 3.95 25.2° 24 h 37 m	9.5 UA 0.023 M _{Earth} 1.88 26.7° 15.94 d
revolution = 224.7 d	365.25 d	687 d	~30 years

Observations of superrotation

0

Pioneer Venus and

Venera probes

Cassini/CIRS thermal winds retrieval (Ls ~ 300°)

Slow rotation:

extension of Hadley cells from equator to the poles

Slow rotation:

extension of Hadley cells from equator to the poles

Superrotation at the equator:

need for non-axisymmetric planetary waves

- Gierasch 1975; Rossow and Williams 1979: GRW mechanism: unstable high-latitude jets Horizontal transport by waves from poles to equator
- Newman and Leovy 1992, Takagi and Matsuda 2007: Possible role of thermal tides
 Vertical transport of angular momentum
- Leovy 1973, Hou and Farrel 1987: Possible role of gravity waves
 Vertical transport of angular momentum

First LMD Titan GCM

Hourdin et al. 1995

Three-dimensional
Fixed homogeneous
haze and composition
Surface to ~250 km

Zonal wind (m/s)

Stream function of the Mean

First LMD Titan GCM

Coupling with haze and chemistry 2D Climate Model

- Barotropic waves have to be parameterized

- Coupled haze and composition

- Surface to ~500 km

Important step :

Development of a parametrization of latitudinal mixing by waves.

PhD work of David Luz

 Study of the mixing properties of barotropic planetary waves in Titan stratosphere (Luz et Hourdin 2003).
 Development of a parameterization (Luz et al., 2003).

Done with a 2D longitude-latitude "shallow water" model.

Coupling with haze and chemistry 2D Climate Model

Back to 3D GCM

- 48x32x55 (0~500 km)
- Haze microphysics coupled
- No clouds microphysics coupled
- No photochemistry coupled
- Diurnal cycle
- Starting from 2D simulation
- 5 Titan years run
- Structure obtained similar to old Hourdin et al. (1995) 3D simulations

Back to 3D GCM

Mean zonal wind

Mean temperature and stream function

Momentum transport

Momentum transport

LMD VENUS GCM

- Three-dimensional: 48x32x50 (0~95 km)
- Vertical coordinates: hybrid (sigma/pressure)
- Dynamical core, transport of tracers
- Specific physics:
 - radiative transfer: Net Exchange Rates matrix
 - parameterizations (sub-grid processes, boundary layer, convection, turbulence)
 - topography
 - no clouds microphysics
- No photochemistry

Lebonnois et al., JGR, 2010

Initial conditions

Starting from a zonal wind profile close to observations

Role of the diurnal cycle

Angular momentum transport

Angular momentum transport Role of waves

-0.80 -0.40

0.00

Latitudes -30 to 30

0,40

D.80

-0.80 -0.40 0.00 0.40 0.80 Latitudes -30 to 30

Discussion

The superrotation problem is a difficult and sensitive one: many GCM have tried and failed to produce superrotation either for Venus or Titan, some succeed. Why ?

- Meridional circulation resulting from slow rotation.
- Titan vs Venus: the influence of seasonal variations.
- Non-axisymmetric angular momentum transport

Venus: vertical transport in the equatorial region generated by thermal tides.

Titan: unstable jet generating horizontal transport by waves. No role from thermal tides (radiative timescales).

Venus: the question of the deep atmosphere is still pending...
 What is missing ? Gravity waves forcing ?
 Relation with Titan's model ?