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Possible Volatile Reservoirs in the Early Solar System

Ilcy Planetesimals
(comets)

Volatile-Bearing Rocky Planete5|m |
(chondritic meteorites) '

Protoplanetary Gas D|sk
(the solar nebula)




Origin of Earth’s atmosphere

H2, N2, CO2, & noble gases
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Hydrogen Atmosphere ...

& A natural by-product of planet formation
in the context of the core accretion model.

Planet formation occurs in a protoplanetary But the Earth has
disk that is composed mainly of hydrogen.
no such hydrogen at present.

planetesimals
R
Questions

rocky planet formation
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Did the Earth never get the disk gas?
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Otherwise, was the primordial
hydrogen completely lost?

TIME
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What are extrasolar
Earth-like planets like?

present

© 000 ) D>

v




Hydrogen Atmosphere ...

& A natural by-product of planet formation
in the context of the core accretion model.

& Causes degeneracy in composition of
exoplanets with measured masses and
radii.

& Produces sufficient amounts of water on
planets.

& Affects the thermal and redox state which

may be relevant to the origin and evolution
of life.

Our objective is
to constrain how much hydrogen a planet obtains.



Accumulation of Atmosphere

L disk If embedded in
R a protoplanetary gas disk,

y atmosphere RN a protoplanet has
\ an extended atmosphere.

Contraction/expansion
of the atmosphere results in
gain/loss of mass.

Energy input
near the atmosphere’s bottom
determines
the mass of the atmosphere




What Determines Atmospheric Mass

lkoma & Genda (2006)
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Accretion of Earth-analogs and super-Earths

Process for in-situ formation

Kokubo & Ida (2000)
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Continuous planetesimal bombardments
are finished, when the protoplanet eats

all planetesimals in its feeding zone.

In most of the inner disk,

the isolation mass is

< 1 Earth mass.

disk mass [solar nebula mass]

o
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— An upper limit to the planet’s mass —

“isolation mass”

01

orbital distance (AU)

Earth analogs and super-Earths should experience
giant collisions and/or migration.




Accretion of Earth-Analogs and Super-Earths

*Protoplanets grow
during inward migration

*Resonantly trapped
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A Recent Picture for Disk Evolution

disk evolution
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How a hydrogen atmosphere accumulates
onto an isolated protoplanet after a giant impact

in a dissipating disk ?



disk gas

“mantle”
(silicate)

Bondi-sphere

atmosphere:

- SCvH EOS for H/He

(Saumon+95)
- radiation/convection
-opacity
gas: Freedman+08
grain: 1/100 x PoIIack+94e
g‘oosp“e‘

oW
mantle: C\(‘)ea’c ot

- Vinet EOS for MgSiO3

with data from Mosenfelder+09
- convection
- liquid/solid



Atmosphere Accumulation: The Case of 5-Earth-mass planet

o

atmospheric mass (Earth mass)
o

102 normalized
disk pressure
Tdisk = 280K |
|0-3 ] e . e
0.0l 0.1 I
time (Myr)

© lkoma & Hori (in prep.)

Runaway accretion
towards a gas giant

The growth levels off
at ~ | Earth mass.

However,
the atmosphere does

not lose its mass.



Blanketing Effect of the Atmosphere

altitude
A
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atmospheric mass (Earth mass)

Atmosphere Accumulation: The Case of 5-Earth-mass planet

© lkoma & Hori (in prep.)

o

disk dissipation
4 without heating by mantle

P disk dissipation

with heating by mantle
10-1}
Mantle’s contribution
is small in this case...
|O-2 ,
Tdisk = 280K ~ Asuper-Earth of 5 Mg,
|063OI — OI — @T,, = 280K obtains

, a massive hydrogen atmosphere
time (Myr) of ~0.1 M, ...



Atmosphere Accumulation: The Case of 1-Earth-mass planet

atmospheric mass (Earth mass)

=

© lkoma & Hori (in prep.)

<
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B disk dissipation
without heating by mantle

P disk dissipation
with heating by mantle

Heating by mantle

104} 1 is effective in removing
a substantial amount
lesk 280K ‘ of atmospheric gas
| 0-5 . — e
0.0l 0.1 I
time (Myr)

An Earth-analog @ T, = 280K obtams
a hydrogen atmosphere of ~ 10 MEa,.th.



Dependence on Planetary Mass

atmospheric mass [MEarth]
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Strong dependence
on the planet’s mass

For low-mass planets,
the thermal contribution
from the mantle is
effective in delaying
atmosphere accumulation.

Earth-analogs and super-Earths obtains
hydrogen atmospheres comparable in mass to
or more massive than Earth’s oceans.

© lkoma & Hori (in prep.)



Mantle (magma ocean)

P (H,0) /P (Hy)
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*Water comparable to or more than hydrogen is produced.
‘Water is retained in the mantle.



Sensitivity to Disk Temperature

IN T T IIIIIII

In extrasolar planetary systems,

g b 1|V|Earth_: earth-like planets could be
- : — j formed in various
E 102 Tdisk = 2801(/,)7"— """" i temperature environments.
8 103f Taisk=500K -
0 104 F 1 750K is a threshold in this case,
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o : is removed by disk dissipation.
o 10°¢ |
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Sudden change in
sensitivity to disk temperature



Close-In Super-Earths around G Stars
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Close-In Super-Earths around M Stars
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Long-term Loss of Atmosphere

fEsca pe
\ Mass-loss rate for energy-limited escape

XUV ' %nt UV flux
: 3F,,
M =¢
7 4GpK
efficiency =

planet’s density
Roche-lobe correction

€ = 0.4 (Yelle08 & many studies)



planet’s mean density [g/cm3]
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Long-term Loss of Atmosphere

Mass lost for 4 Gyr around G stars

super-earths with massive H2
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planet’s mean density [g/cm3]
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Long-term Loss of Atmosphere

Mass lost for 4 Gyr around M stars
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Summary: Terrestrial Planets to be Detected

hydrogen-covered

stellar mass rocky planets vapor planets planets

A

G stars
planetary

ocean planets

M stars
1ME

Hydrogen-covered terrestrial planets should exist in extrasolar systems.

/ | U.UlAU U.1AU 1AU

Ocean planets can be in-situ formed relatively easily.




® Recent theories of planet formation suggest that Earth-like
planets are likely to form via giant collisions in a dissipating disk.

® While both deposition of accretion energy upon giant collisions
and disk dissipation hinder the accumulation of the hydrogen
atmosphere, a planet obtains a certain amount of hydrogen.

» Earth-mass planets @ T, =280K obtains hydrogen
comparable in mass to Earth’s oceans.

» The dependence on planet’s mass is quite strong.

® Our study predicts:

» Hydrogen-covered super-Earths should exist in extrasolar
systems.

» Ocean planets can be in-situ formed relatively easily.

® More studies are needed to bridge the gap between
the solar system and extrasolar systems.



