Global GCM simulations of Jupiter's atmosphere
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These jets can be reproduced qualitatively using
idealised models such as the 2D non-divergent
barotropic vorticity equations on a sphere (left), and
recently using quasigeostrophic and simplified
general circulation models (GCMs, right). The
strength and direction of the giant planets' equatorial
jets are not yet fully understood, however. Simple
models suggest a preference for retrograde flow, but
Jupiter's and Saturn's are prograde.

Introduction

The giant planets have long been recognised as some of the best natural laboratories
for studying planetary fluid dynamics.

Nevertheless, we still only poorly understand the mechanisms responsible for the
formation and maintenance of the ubiquitous zonal jets on these planets, of which
Jupiter's are the most spectacular example (see background image).

Of particular interest is how energy is
injected into the system at small scales to
drive the eddies and jets. Observations of
lightning on the giant planets (left) suggest
that moist convection might be the dominant

Recent work with a limited-area Jupiter general
circulation model (GCM) developed in Oxford has
focused on that planet's troposphere and
stratosphere, including the effects of moist convection
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small-scale process responsible [ref. I00]. [Z09]. We report on our progress in extending this
model to a global domain. We soon hope to be able to
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Galileo) [B98, Fig. 6]. rates [S09, Fig. 3] from GCM simulations including latent heating [L10, Fig. 2]
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_ A GCM for giant planet atmospheres has been developed in Oxford over the last decade [Y04]
Tracer advection @ m@ E@m based on the dynamical core of the UK Met Office Unified Model. This model is primarily known
Dynamics (Navier-Stokes) . to the public via the BBC's weather forecasts, and the particular version of the model we use is

well known in the scientific community through the climateprediction.net project.

Atmosphere model Physics (everything else)
p : Our model solves the primitive equations in sigma coordinates for the jovian
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spacecraft (black) [P03, Fig. 1].
The red line is the equivalent
measured by Voyager 2 [L86].

All the Earth-specific physical parameterizations have been

removed (above), and simple equivalents added for Jupiter:

- Newtonian cooling of potential temperature

- Passive cloud tracers (NH3 currently included, but no latent heat feedback)

- Richardson number-based vertical mixing

- Dry adiabatic adjustment

- Moist convection (currently inactive)

- Rayleigh damping of zonal velocity towards an observed profile (to be
deactivated in the future)
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sulﬁ%! T exa -'ﬂu rur iusmg the global model, with a resolution of two degrees in latitude
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"~ about six and 60 Earth days reSpé‘::tlvely The equilibrium temperature field (Cassini data) is a
velocity field (Voyager data) is a function of latitude only (both

re free-slip, i.e. they have no velocity boundary condition.

Jf"h at ' tor) but are extremely weak, as there
Most work to date has been based on a limited area model, periodic in ' | é *-f{q.; D

longitude, including the south equatorial and temperate belts and the

Great Red Spot [Z09] (above right and below). n eﬂ:f‘and-honzontal velocity field (right) at

in“; dlfferent times during the model run. Vapour
n ; thllS range from zero (black) to 830 ppmm (red).
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Typical limited area model velocity field around 1 bar at t + 970
days. Resolution is 0.5 degrees in latitude and longitude.

Our current work is focused on testing and validating S ‘ | R — e

a global version of this model, and configuring it for a opPzonal N | P e T
cluster in Oxford. The model is still very much in the B WiEy 1 | 5 -30F eSS
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giving us up to 512 processors to run simulations on, _ concentration
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Schematic of our
moist convection
parameterization
for Jupiter based
on the Carnot
cycle. Not yet
included in the
global model
[Z09Db, Fig. 1].
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| features in the atmosphere
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the thermal wind equation and a vertical
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Future directions

Our immediate goals are to
- Configure and run the model on a large cluster
- Re-activate the moist convection parameterization
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- Perform spin-up experiments with moist convection : 0 0 ~50 temperature profile to produce 3D
- Run at resolutions below 0.5 degrees K ———————————————— | — e ;_@:”i;ﬁgrizontal velocity fields.
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- Add an equator-pole temperature gradient induced _ | ey
by differential solar heating 50C eft:eddy [ e e e S S Ee
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On a longer timescale we plan to . : R
- investigate turbulent properties of the flow A_ B | L N - T e o

- use observational data for validation and initialisation : _ | T or e

- extend the model to other planets
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