The impact of microphysics and mixing
on optical properties of shallow cumulus clouds
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Motivation Model and modeling setup

& Model: the Eulerian version of the three-dimensional anelastic model

~ EULAG: http://www.mmm.ucar.edu/eulag/
& Cloud droplet/aerosol characteristics for one/double-moment scheme,
respectively:
-® Maritime with concentration of 100 mg!' — the PRISTINE case
. . . .. -®- Continental with concentration of 1000 mg™! - the POLLUTED case
* We present results concerning the impact of subgrid-scale mixing on O . o,

. . . . . &2 For double-moment scheme, in-cloud activation 1s either turn on or turn off.
microphysical properties on trade-wind cumulus (BOMEX experiment; . .. . . L.
Holland and Rasmusson 1973) Off line radiative transfer applying the independent column approximation

' 2 Model setups: Siebesma et al. (2003)

o

* Recent modeling studies (e.g.Chosson et al. 2004, 2007; Grabowski
2006) demonstrate that assumptions concerning microphysical evolution
of clouds (the homogeneity of cloud-environment mixing in particular)
affect the albedo of a field of shallow convective clouds.

¢ Computational domain sizes and gridlengths:
- 6.4kmx6.4km x3km; 50m x50m x20m
&) All simulations are run with time step of 1 s. Data are archived every 10
~ minutes.
& The simulations are run for 6 h and the last three hours are used in the
analysis.

* We use both one-moment and new double-moment warm-rain scheme
of Morrison and Grabowski (2007, 2008).and contrast results applying
the prescribed mixing scenarios: homogeneous (h) versus extremely
inhomogeneous (€x)

droplets in the domain has been calculated: with either one-moment (left panel) or double-moment (right panel) warm-rain scheme
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T can be interpreted as the timescale of the cloud droplet lifetime, since it
specifies how fast existing droplets are to be replaced by the one to be activated.
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® The timescale (Table 1) is in the range of about

® Lower timescale (higher activation rate) values for extremely inhomogeneous
mixing than for homogeneous mixing.

® Larger timescale values for cases where activation has been turned off above

700 m.
® Lower value for the POLLUTED than for the PRISTINE case (the effective " et radius  fective radius " e " dciverde
radius 1s lower for the POLLUTED than for the PRISTINE case).
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Histograms of cloud TOA (top of the atmosphere) albedo for model columns
with LWP (liquid water path) larger than 0.005 kg m .
for one-moment (left plot) and double-moment (right plot) warm-rain scheme
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[ PRISTINE POLLUTED
mixing scenario | (u) (h) (in) (e} (u) (h) (in) =
T (1) | 115 104 8.0 7.7 236 411 183 15.8

|

7o (pm) 8.1 9.1 11.1 136 4.0 4.4 5.4 6.7
Actoway (1) 0,332 0320 0,253 0.270 0454 0441 0.409 0.381
S F gy (Wm™) | 229 234 245 255 177 182 198 208

—

100 0 200 400 Table 1: Cloud droplet lifetime (7) mean effective radius (r.sr) and mean
cloud droplet concentration [mg_1] TOA albedo (Acioudy) for PRISTINE (100) or POLLUTED (1000) cases with
homogeneous (h) or extremely inhomogeneous (ex) mixing scenario, with in-

cloud activation turn on (ACT ON) or off (ACT OFF)

® Cloud droplet concentration (dashed line) is either constant or slightly increasing with height.
® Besides a peak at the cloud base, there is an (solid line) -
’ min| | r m| | A v |1
(correlated with peak of vertical velocity). = 7 _|min] e/ J |pom] gouap 1]
® For simulations with in-cloud activation turn off (dashed dotted line), cloud droplet concentration decreases with 100 h; ACT ON 4.00 11.20 0.270

height drastically. 100 ex; ACT ON 3.20 11.97 0.265
1000 h; ACT ON 3.48 6.97 0.347

1000 ex; ACT ON | 2.91 7.33 0.338

. 100 h; ACT OFF 4.20 15.51 0.238

I S:pcrsatration S—— 100 ex; ACT OFF | 3.48 17.74 0.233

Sy :":; “ 1000 h; ACT OFF | 4.53 9.80 0.308

In-cloud activation (R 1000 ex; ACT OFF | 3.71 11.23 0.289

mainly around cloud
core

Summary and conclusions

& In-cloud activation is a significant process for shallow cumulus convection.

& In-cloud activation occurs at the edge of the cloud core, in the region of strong increase of vertical velocity as well as
supersaturation gradient.

& Mean cloud droplet lifetime is about 3-4 min, with lower value for extremely inhomogeneous mixing scenario than for
the homogeneous mixing scenario (keep in mind that cloud droplets are depleted faster for the extremely inhomogeneous
mixing scenario).

& Wider distribution of the effective radius and slightly smaller mean effective radius for the homogeneous mixing case
than for the extremely inhomogeneous.

e — e A 1 A ‘ ‘ ‘ & PDFs of cloud albedo have pattern similar to those in Grabowski (2006), with differences between different mixing
normalized cross-section through clouds of width=700 m at the given layer 0 5 80 . . . .
scenarios significantly smaller for double-moment warm-rain scheme.

& Mean albedo is lower for PRISTINE case than POLLUTED case by about 0.05-0.09 for double-moment warm-rain

scheme (differences larger for one-moment scheme).
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A few words about applications of model EULAG:
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