The diagnostic value of polarisation spectra

Daphne Stam

4

Netherlands Institute for Space Research

What is polarisation?

Light is fully described by a vector: $\mathrm{F}=[\mathrm{F}, \mathrm{Q}, \mathrm{U}, \mathrm{V}]$

The degree of linear polarisation of the light is:

$$
P(\lambda)=\frac{\sqrt{ }\left(Q^{2}(\lambda)+U^{2}(\lambda)\right)}{F(\lambda)}
$$

How to measure polarisation

$$
\begin{aligned}
& F=F_{90}+F_{0} \\
& Q=F_{90}-F_{0}
\end{aligned}
$$

$$
F_{-45}
$$

$$
\begin{aligned}
& F=F_{45}+F_{-45} \\
& U=F_{45}-F_{-45}
\end{aligned}
$$

Important:

- With e.g. polarizing beamsplitters you do not lose photons!
- Polarimetry can be independent of instrument parameters!
- Polarimetry is also independent of Earth atmosphere transmission!

Sources of polarisation in planetary systems

凶 Direct starlight
\mathbb{U}^{\prime} Scattered starlight
\mathbb{U}^{\prime} Reflected starlight

SRON

Numerical simulations

Planet models:

- locally plane-parallel atmosphere
- horizontally homogeneous
- vertically inhomogeneous
- gases, aerosol, cloud particles
- planetary rings

Radiative transfer code:

- adding-doubling algorithm
- fluxes and polarisation
- efficient disk-integration
(for details, see e.g. Stam et al. 2004, 2006, 2008)

Surface pressure

The surface pressure can be derived from an atmosphere's molecular scattering optical thickness:

Rayleigh scattering atmosphere, no absorption.
Phase angle is 90° (included in albedo).

Surface pressure

The influence of the surface albedo:

Rayleigh scattering atmospheres, no absorption, Lambertian surfaces. Phase angle is 90° (included in albedo).

forrafplantëhwithroptaciotidsphase angle

The albedo and degree of polarisation of the Earth at various wavelengths, i.e. optical thicknesses:

Rayleigh scattering atmosphere, no absorption, no clouds, surface albedo 0.1.

SRON

... what about cloudy planets?

The model atmosphere:

Rayleigh scattering

Cloud layer, $\tau=100$

Black surface

Cloud top pressure

The cloud top pressure can be derived from the molecular scattering optical thickness above the cloud:

Rayleigh scattering atmosphere, bounded below by a $\mathrm{T}=100$ cloud layer. Spherical cloud droplets, with $r_{\text {eff }}=2.0 \mu \mathrm{~m}, n_{\mathrm{r}}=1.3$ and $n_{\mathrm{i}}=0.00001$.

SRON

... as functions of a planet's phase angle

The albedo and degree of polarisation of a cloudy planet at various molecular scattering optical thicknesses т:

Rayleigh scattering atmosphere, bounded below by a $\mathrm{T}=100$ cloud layer. Spherical cloud droplets, with $r_{\text {eff }}=2.0 \mu \mathrm{~m}, n_{\mathrm{r}}=1.3$ and $n_{\mathrm{i}}=0.00001$.

SRON

Rayleigh scattering atmosphere, bounded below by a $\mathrm{T}=100$ cloud layer. Spherical cloud droplets, with $r_{\text {eff }}=2.0 \mu \mathrm{~m}, n_{\mathrm{r}}=1.3$ and $n_{\mathrm{i}}=0.00001$.

SRON

Quiz

Which particles are found on this planet?

SRON

Summary

- The degree of polarisation of planetary light contains information that cannot be obtained from the flux:
- surface pressure
- cloud top pressure/altitude
- cloud particle microphysical properties
- The degree of polarisation should be measured at several, at least 2 , wavelengths
- The degree of polarisation should be measured with a precision better than 5%, preferably better than 1%

SRON

