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Titan:  Saturnʼs largest moon

• Larger than Mercury
• 50% water (ice)
• 1.5 bar N2 atmosphere
• 5 m LMP!!
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North pole
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30N-30S
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Titanʼs methane clouds

Roe et al. 2005

NASA/JPL/Univ. of Arizona

Keck Telescope Cassini
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Titanian floods

Turtle et al. 09
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Hadley cells and tropical climate
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Steady Hadley cell theory:
Momentum and energy transport by Hadley 
cells
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Tropics on Earth and Titan
Held & Hou ʼ80 
Caballero et al. ʼ08 

ϕH ∝ cgP/R

Held & Hou ʼ80 
Caballero, Pierrehumbert, Mitchell ʼ08 
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Tropics on Earth and Titan
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Titanʼs Greenhouse & Antigreenhouse
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A simplified climate model for Titan

• Axisymmetric primitive equations
• Gray radiative transfer (greenhouse)
• Parameterized shortwave absorption (antigreenhouse)
• Slab surface assumed to be saturated with methane
• Simplified Betts-Miller convection scheme for a general 

condensate
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A simplified climate model for Titan

• Axisymmetric primitive equations
• Gray radiative transfer (greenhouse)
• Parameterized shortwave absorption (antigreenhouse)
• Slab surface assumed to be saturated with methane
• Simplified Betts-Miller convection scheme for a general 

condensate

• Approach:  Vary parameters controlling methane
to pass from a dry to moist climate
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The range of Titanian climate
from dry to moist

1 Titan year = 29.5 Earth years

Mitchell et al. ʼ06 (PNAS)
Mitchell et al. ʼ09 (Icarus)
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1 Titan year = 29.5 Earth years

The range of Titanian climate

Mitchell et al. ʼ06 (PNAS)
Mitchell et al. ʼ09 (Icarus)
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Climate implications of the oscillating 
Hadley cell

Mitchell ʼ08 (JGR-Planets)
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Climate implications of the oscillating 
Hadley cell

Divergence

Moisture fluxed away 
from low-latitudes

Divergence

Mitchell ʼ08 (JGR-Planets)
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Climate implications of the oscillating 
Hadley cell

Divergence

Moisture fluxed away 
from low-latitudes

Divergence

Mitchell ʼ08 (JGR-Planets)

Hydrology
is needed
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Terraplanet experiment design

Mitchell ʼ08 (JGR-Planets)
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Terraplanet experiment design

Approach:  Vary the initial methane inventory
Mitchell ʼ08 (JGR-Planets)
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Variation of reservoir depth

Mitchell ʼ08 (JGR-Planets)
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Variation of reservoir depth

Mitchell ʼ08 (JGR-Planets)
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Terraplanet GCM simulations: 
sensitivity to initial reservoir depth

Colors: Reservoir depth
Lines:  Precipitation

Final 2 years of
45 Titan years

Mitchell ʼ08 (JGR-Planets)

Friday, 10 September 2010



Terraplanet GCM simulations: 
sensitivity to initial reservoir depth

Climatologically
dry

Colors: Reservoir depth
Lines:  Precipitation

Final 2 years of
45 Titan years

Mitchell ʼ08 (JGR-Planets)

Friday, 10 September 2010



Terraplanet GCM simulations: 
sensitivity to initial reservoir depth

Accumulation
zones

Colors: Reservoir depth
Lines:  Precipitation

Final 2 years of
45 Titan years

Mitchell ʼ08 (JGR-Planets)
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Terraplanet GCM simulations: 
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Colors: Reservoir depth
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Terraplanet GCM simulations: 
sensitivity to initial reservoir depth

Only polar
accumulation

Colors: Reservoir depth
Lines:  Precipitation

Final 2 years of
45 Titan years

Mitchell ʼ08 (JGR-Planets)
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Terraplanet GCM simulations: 
sensitivity to initial reservoir depth

Colors: Reservoir depth
Lines:  Precipitation

Final 2 years of
45 Titan years

At or near this threshold
Mitchell ʼ08 (JGR-Planets)
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Summary

• Thermodynamic-dynamic coupling controls the 
positions and seasonality of methane clouds.

• The oscillating Hadley cell produces climatologically 
dry conditions near the equator and accumulation 
zones at the poles, as observed.

Mitchell et al. ʼ06 (PNAS)
Mitchell ʼ08 (JGR-Planets)
Mitchell et al. ʼ09 (Icarus)
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Part II:
The transition to superrotation

20

Earth-like Titan-like
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Evidence for superrotation in Titanʼs atmosphere:
Huygens winds at 10o S latitude

Bird et al. 05

21

Zonal winds
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Evidence for superrotation in Titanʼs atmosphere:
Huygens winds at 10o S latitude

Bird et al. 05

21

Zonal winds
Superrotation
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Superrotation in Titanʼs upper atmosphere

22

Achterberg et al. 08
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Superrotation mechanisms:
Non-axisymmetric forcing

23
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Superrotation mechanisms:
Non-axisymmetric forcing

• Suarez & Duffy (92), Saravanan (93), Held (00)

23
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Superrotation mechanisms:
Non-axisymmetric forcing

• Suarez & Duffy (92), Saravanan (93), Held (00)
• Two-layer models of Earth bifurcate if driven by 

sufficiently non-axisymmetric heating
– standard climatology -- superrotating climatology
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Superrotation mechanisms:
Non-axisymmetric forcing

• Suarez & Duffy (92), Saravanan (93), Held (00)
• Two-layer models of Earth bifurcate if driven by 

sufficiently non-axisymmetric heating
– standard climatology -- superrotating climatology

• Equatorial region becomes “transparent” to transient 
eddies

23Held ʼ00
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Superrotation mechanisms:
Axisymmetric forcing

24c.f. Lebonnois talk
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Superrotation mechanisms:
Axisymmetric forcing

• High-latitude barotropic instability 
– Geirasch, Rossow, Williams (also Yamamoto & Takahashi, 

Hourdin, Luz)

24

Luz & Hourdin ʼ03

c.f. Lebonnois talk
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Modeling Framework

25Mitchell & Vallis ʼ10 (submitted to JGR)
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Modeling Framework

• GFDL FMS spectral dynamical core
• Newtonian cooling to a stable state
• Rayleigh friction
• Advantage:  Allows non-dimensionalization

25Mitchell & Vallis ʼ10 (submitted to JGR)
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Modeling Framework

• GFDL FMS spectral dynamical core
• Newtonian cooling to a stable state
• Rayleigh friction
• Advantage:  Allows non-dimensionalization

25Mitchell & Vallis ʼ10 (submitted to JGR)

• Approach:  Vary a single parameter over a large range
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Experiment design

• Vary the thermal Rossby number

26Mitchell & Vallis ʼ10 (submitted to JGR)
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Experiment design

• Vary the thermal Rossby number
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Experiment design

• Vary the thermal Rossby number
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Results:
Hadley cell and zonal winds

27Mitchell & Vallis ʼ10 (submitted to JGR)
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Geopotential Anomaly
&

Zonal Winds

Mitchell & Vallis ʼ10 (submitted to JGR)
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Earth

Titan

Intermediate

Mitchell & Vallis ʼ10 (submitted to JGR)
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Global wave structure:  Field anomalies

29

Shaded:
Geopotential

Contours:
Pot. Vorticity

Blue:
Zonal wind

Mitchell & Vallis ʼ10 (submitted to JGR)
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Barotropic instability
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Barotropic instability

• Interacting edge waves 
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Barotropic instability

• Interacting edge waves 
in mean shear

• PV gradient reversal
• Anomalous circulation 

tilts into mean shear
• Down-gradient 

momentum transport
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Barotropic instability

• Interacting edge waves 
in mean shear

• PV gradient reversal
• Anomalous circulation 

tilts into mean shear
• Down-gradient 

momentum transport
• Up-gradient angular 

momentum transport

30
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Putting it all together

31

Pricipitation Zonal Winds
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Some parting thoughts
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• In a complex system, robust mechanisms are 
illuminated by idealized models, e.g.,
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Some parting thoughts

• In a complex system, robust mechanisms are 
illuminated by idealized models, e.g.,
– the role of thermal inertia in climate (c.f. Wordsworth, Menou, 

Forget, Marshall talks)
– the role of seasonality in climate (drying Titanʼs dunes; c.f. 

Marshall talk)
– mechanisms responsible for dynamical regime transitions 

(superrotation, c.f. Read, Showman talks)
• As such, they form the base of a model hierarchy

– “using models to understand models”
– parameter exploration in data-poor fields

• They do not replace more comprehensive models -- 
there is a synergy between them

32
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Extra Slides

33

Friday, 10 September 2010



Summary

34Mitchell & Vallis ʼ10 (submitted to JGR)
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Summary

• A terrestrial atmosphere transitions to superrotation at 
Ro>1.

34Mitchell & Vallis ʼ10 (submitted to JGR)
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Summary

• A terrestrial atmosphere transitions to superrotation at 
Ro>1.

• A new, global wave dominates eddy momentum 
convergence at the equator.
– travels both westward and eastward relative to mean flow
– mixed baroclinic-barotropic instability
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Summary

• A terrestrial atmosphere transitions to superrotation at 
Ro>1.

• A new, global wave dominates eddy momentum 
convergence at the equator.
– travels both westward and eastward relative to mean flow
– mixed baroclinic-barotropic instability

• Once established, superrotation is very stable
– weak frictional and advective torques
– a mix of high- and low-latitude barotropic instability

34Mitchell & Vallis ʼ10 (submitted to JGR)
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Experiment Design

Mitchell et al. ʼ06 (PNAS)
Mitchell et al. ʼ09 (Icarus)
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Experiment Design

• Dry and moist cases
– Dry:  Lv = 0, so that cond/evap do not heat/cool
– Moist:  Lv = Lv,CH4 

es(T ) = esoe
(Lv/Rv)(1/To−1/T )

Mitchell et al. ʼ06 (PNAS)
Mitchell et al. ʼ09 (Icarus)
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Experiment Design

• Dry and moist cases
– Dry:  Lv = 0, so that cond/evap do not heat/cool
– Moist:  Lv = Lv,CH4 

es(T ) = esoe
(Lv/Rv)(1/To−1/T )

Flat ∝ ρULv(rhsqs − qo)

rhs = 0.5

• Intermediate case
– Limit latent surface fluxes by reducing the “target” relative 

humidity

Mitchell et al. ʼ06 (PNAS)
Mitchell et al. ʼ09 (Icarus)
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Test cases:  
Evidence for equatorial control

36Mitchell & Vallis ʼ10 (submitted to JGR)
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Test cases:  
Evidence for equatorial control

36

45-90N/S 3N-3S

Mitchell & Vallis ʼ10 (submitted to JGR)
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Test cases:  
Evidence for equatorial control

36

Weak Superrotation

45-90N/S 3N-3S

Mitchell & Vallis ʼ10 (submitted to JGR)
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Test cases:  
Evidence for equatorial control

36

Axisymmetric!!

45-90N/S 3N-3S

Mitchell & Vallis ʼ10 (submitted to JGR)

Friday, 10 September 2010



Fourier cospectra of eddy momentum fluxes

37

Kn,ω(u, v) = 2〈Re(U ′V ′∗)〉

Randel & Held ʼ90 (JAS)
Mitchell & Vallis ʼ10 (submitted to JGR)
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Fourier cospectra of eddy momentum fluxes

• Wavenumber 1 dominates the Ro=10.5 case.

37

Kn,ω(u, v) = 2〈Re(U ′V ′∗)〉

Randel & Held ʼ90 (JAS)
Mitchell & Vallis ʼ10 (submitted to JGR)
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Geopotential anomaly of the global wave:  
Spinup

38Mitchell & Vallis ʼ10 (submitted to JGR)
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39Mitchell & Vallis ʼ10 (submitted to JGR)

Geopotential anomaly of the global wave:  
Steady state
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